Estimating the Economic Impacts of Climate Change on California Agriculture

Richard Howitt, Josué Medellín-Azuara, Duncan MacEwan and Jay Lund

University of California, Davis

California Energy Commission

Public Interest Energy Research Program Sacramento, September 10 2009

Overview

- Introduction
- Model Description
- Model Innovations
 - Incorporation of Agronomic Results
 - Climate Change Impacts through water and land
- Results
 - Extensive Margin
 - Land Use, Prices, Revenues, Water Use
 - Intensive Margin
 - Water Use per Acre in Region 19
- Extensions
- Conclusions

Introduction

- Value of Agriculture in California
- Land cropping patterns are influenced by
 - Economic factors
 - Geographic conditions
 - Climatic conditions
- Future of California agriculture
 - Interaction among:
 - Technology
 - Resources
 - Market demands

The Statewide Agricultural Production Model (SWAP)

- Farmers are assumed:
 - Rational
 - Aimed to maximize profits
- Three step self-calibrating model
- Dairy herd feed is included
- Inputs: water, labor, land, supplies, 2000-05
- Thirteen Crop groups
- Two climate scenarios analyzed 2050
 - Historical
 - Warm-Dry

SWAP Geographical Coverage

Technological Change and Crop Demands by 2050

Crop	Yield % Change Technology	Demand % Change Intercept
Alfalfa*	29.1	3.3
Citrus	28.5	3.6
Corn	25.4	5.7
Cotton	29.1	2.1
Field	29.1	3.3
Grains	29.1	7.6
Grapes	23.4	16.4
Orchards	36.4	3.8
Rice	31.9	-4.1
Tomato	40.1	26.9
Truck	25.4	45.5

California Perennial Crops (Lobell et al.)

Perennial Crops... continued

Lee, De Gyrze and Six

Red is low emissions (B1) Blue is high emissions (A2)

Lee, De Gyrze and Six

Red is low emissions (B1)
Blue is high emissions (A2)

Climate Change Model Innovations

Water Availability (feedback from CALVIN)

% Change in		
Available Water	Agriculture	Urban
Total	-25.7	-0.5

ClimateInducedYieldChange

Crop Groups	Sacramento	San Joaquin
Alfalfa	4.9	7.5
Citrus	1.77	-18.4
Corn	-2.7	-2.5
Cotton	0.0	-5.5
Field	-1.9	-3.7
Grain	-4.8	-1.4
Orchards	-9.0	-9.0
Pasture	5.0	5.0
Grape	-6.0	-6.0
Rice	0.8	-2.8
Tomato	2.4	1.1
Truck Crops	-11.0	-11.0

Extensive Margin Results: Land Use Changes

- Shift to less water intensive crops
- Production shifts to regions with comparative advantages

Land Use Changes with Climate Change

Extensive Margin Results: Regional Revenue Reduction

Change in Revenues with Climate Change

Extensive Margin Results: Crop Prices, Production, Revenues

Extensive Margin Results: Regional Water Use

- Reduced water use across regions
 - Warm-dry climate water use from CALVIN allows for water transfers

Intensive Margin Results: Water Use per Acre in CVPM 19

- Region 19 is in Kern County
- Farmers adjust water use per acre in response to reductions in available water and changing yields

Land, Water and Revenues 2050 versus 2005

Conclusions

- Both agronomic studies showed yield reduction in perennial and annual crops, with the exception of fodder crops.
- Both integrative studies found that water shortages will be the key resource through which climate change impacts will be felt in California
- Adaptation to climate change will depend on innovative research and resource management methods.
- Statewide acreage reductions average 20.5%
- 2050 agricultural revenues will increase over 2005 levels by 12.5% despite reductions in land and water use.